De novo transcriptome assembly of two different Prunus salicina cultivars

نویسندگان

  • Yeonhwa Jo
  • Sen Lian
  • Jin Kyong Cho
  • Hoseong Choi
  • Hyosub Chu
  • Won Kyong Cho
چکیده

Plum is a globally grown stone fruit and can be divided into several species. In particular, the Prunus salicina, which is native to China, is widely grown in many fruit orchards in Korea and Japan, as well as the United States and Australia. The transcriptome data for Prunus salicina has not been reported to our knowledge. In this study, we performed de novo transcriptome assembly for two selected P. salicina cultivars referred to as Akihime and Formosa (commercially important plum cultivars in Korea) using next generation sequencing. We obtained a total of 9.04 GB and 8.68 GB raw data from Akihime and Formosa, respectively. De novo transcriptome assembly using Trinity revealed 155,169 and 160,186 transcripts for Akihime and Formosa. Next, we identified 121,278 and 116,544 proteins from Akihime and Formosa using TransDecoder. We performed BLASTP against the NCBI non-redundant (nr) dataset to annotate proteins. Taken together, this is the first transcriptome data for P. salicina to our knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De novo transcriptome assembly of ‘Angeleno’ and ‘Lamoon’ Japanese plum cultivars (Prunus salicina)

Japanese plum (Prunus salicina L.) is a fruit tree of the Rosaceae family, which is an economically important stone fruit around the world. Currently, Japanese plum breeding programs combine traditional breeding and plant physiology strategies with genetic and genomic analysis. In order to understand the flavonoid pathway regulation and to develop molecular markers associated to the fuit skin c...

متن کامل

De novo transcriptome assembly of two different Prunus mume cultivars

Prunus mume, belonging to the Prunus genus, is an Asian tree, and its common names are Chinese plum and Japanese plum. P. mume are cultivated for fruit production as well as ornamental purposes. In this study, we conducted de novo transcriptome assembly for two selected P. mume cultivars referred to as Takada and Wallyoung (commercially important cultivars for fruit production and ornamental tr...

متن کامل

De novo transcriptome assembly of two different apricot cultivars

Apricot (Prunus armeniaca) belonging to the Prunus species is a popular kind of stone fruit tree. Apricot is native to Armenia and is currently cultivated in many countries with climates adaptable for apricot growth. In general, fresh fruits as well as dried apricot are produced. However, the information associated with genes and genetic markers for apricot is very limited. In this study, we ca...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

De novo transcriptome assembly of two different peach cultivars grown in Korea.

Peach (Prunus persica) is one of the most popular stone fruits worldwide. Next generation sequencing (NGS) has facilitated genome and transcriptome analyses of several stone fruit trees. In this study, we conducted de novo transcriptome analyses of two peach cultivars grown in Korea. Leaves of two cultivars, referred to as Jangtaek and Mibaek, were harvested and used for library preparation. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015